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Segmentation and counting of blood cells are considered as an important step that helps to extract features to diagnose some
specific diseases like malaria or leukemia. The manual counting of white blood cells (WBCs) and red blood cells (RBCs) in
microscopic images is an extremely tedious, time consuming, and inaccurate process. Automatic analysis will allow hematologist
experts to perform faster and more accurately. The proposed method uses an iterative structured circle detection algorithm for the
segmentation and counting of WBCs and RBCs. The separation of WBCs from RBCs was achieved by thresholding, and specific
preprocessing steps were developed for each cell type. Countingwas performed for each image using the proposedmethod based on
modified circle detection, which automatically counted the cells. Several modifications were made to the basic (RCD) algorithm to
solve the initialization problem, detecting irregular circles (cells), selecting the optimal circle from the candidate circles, determining
the number of iterations in a fully dynamic way to enhance algorithm detection, and running time. The validation method used to
determine segmentation accuracy was a quantitative analysis that included Precision, Recall, and F-measurement tests.The average
accuracy of the proposed method was 95.3% for RBCs and 98.4% for WBCs.

1. Introduction

The analysis of microscopy images is extremely important
in both the medical and the computer science fields. Many
research problems are related to the analysis of microscopy
images, such as complete blood count (CBC) tests [1] and
the analysis of blood smears, which is considered the first
step in detecting and diagnosing malaria, leukemia, and
anemia. Additionally, during a complete physical exam a
series of tests are performed. One of these tests is the CBC,
which is used to evaluate the composition and concentration
of all cellular blood components. The CBC determines red
blood cell (RBC) counts, white blood cell (WBC) counts,
platelet counts, hemoglobin (HB) measurements, and mean
red blood cell volumes [2].

CBC tests and the analysis of blood smear images help
to evaluate, diagnose, andmonitor various health conditions,

such as anemia, leukemia, infections, and allergic conditions
[3]. For blood disorders, such as anemia, which is based on
HB level, the production and destruction of red blood cells
are evaluated. In red blood cell disorder such as anemia,
other red cell indices such as (mean cell volume) MCV, mean
cell hemoglobin (MCH), mean corpuscular hemoglobin
concentration (MCHC), RBC, and red blood cell distribution
width (RDW or RCDW) are evaluated to narrow down on
the causes of anemia. If the red cell indices are suggested
of iron deficiency anemia (IDA), further tests to confirm
the IDA will be done. In normal blood, red blood cell
(RBC) counts range from 4.2 to 5.9 million cells per square
centimeter. High RBC counts can be indicative of serious
medical conditions, such as heart, lung, or kidney disease.
Primary or secondary polycythemia in polycythemia HB
is also raised; a bone marrow disorder also causes high
RBC counts [2]. Normal WBC counts range from 4,500 to
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10,000 WBCs per microliter of blood [4]. High WBC counts
(above 30000 cells per microliter) indicate an infection,
systemic illness, inflammation, allergy, leukemia, or burn-
induced tissue injury. If leukemia is suspected, analysis of
blood smear is done to look for morphology of the leukemic
cells and followed by bone marrow examinations [2–4]. For
platelets, which are small blood cell fragments that assist in
blood clotting, normal counts range from 150,000 to 450,000
platelets per microliter. In patients with low platelet count
such as in patients with dengue infection, their platelet count
is monitored closely and the value is within critical level,
the patient might need platelet transfusion [2]. Generally,
any abnormal blood smear reading indicates an infection or
disease.

Malaria and Babesia are parasites that infect RBCs; the
analysis of thin blood smear remains the gold standard for
diagnosis in such disease [5]. Microscopy images are also
still used for early diagnosis, analysis, and count of some
blooddisorder such as sickle cell anemia and leukemia, before
confirming it with other laboratory tests. However, manual
or visual quantification of parasitemia in thin blood films
and WBCs in leukemia is an extremely tedious, subjective,
and time-consuming task with a high probability of count-
ing error [6, 7]. An accurate segmentation and counting
mechanism that gathers information about the distribution of
microscopic particles may help diagnose abnormalities dur-
ing clinical analysis. Our objective in this paper is to develop
and validate an algorithm that segments and automatically
counts red and white blood cells in microscopy images.
The ground truth of the images was determined by experts.
For the evaluation, quantitative analyses were performed
on the segmentation results based on the ground truth,
and the 𝐹-measure method was used to confirm accuracy.
In the following sections of this paper, we will summarize
related work on the segmentation and counting of RBCs and
WBCs (Section 2), present themethodology used (Section 3),
discuss the results and experiments (Section 4), and review
the conclusions.

2. Related Work

Many researchers have investigated blood cell segmentation
and counting. Some researchers [5, 8–10] usedmorphological
operations and thresholding to do the segmentation and
counting. Berge et al. [5] presented an approach based
on a morphological method and iterative threshold tech-
niques. Segmentation was performed on red blood cells,
which included clumped cells, and boundary curvatures
were used to construct a Delaunay triangulation. They used
real microscopy images prepared in the laboratory, and
the ground truth was determined by a laboratory expert.
A 2.8% difference was calculated between the manual and
automatic counting of red blood cells.Theirmethod tolerated
a degree of overlapping, but in cases with a high degree
of overlapping cells, the cells were unable to be detected.
Additionally, the iterative threshold method was unable to
detect faint red cells. Damahe et al. [8] used the S andV image
components of a HSV color model with Zack’s thresholding
technique for cell segmentation.Thresholding combinedwith

a sequential edge-linking algorithm was used to increase
segmentation accuracy. The experimental dataset and blood
cell images were collected from the Dhruv Pathology Lab
and the CDC-DPDx, respectively, and the ground truth was
determined by experts. The dataset size was limited. Several
RBCs that were detected possessed holes. Additional prepro-
cessing steps should have been implemented to increase the
accuracy. Panchbhai and Vishal [9] proposed an automated
analysis that counted red blood cells and detected malaria
parasites in thin blood smear samples. The green color layer
was processed to count all of the RBCs; segmentation was
performed on the infected RBCs using Otsu thresholding. A
histogramwas used to determine the optimal threshold. CDC
datasets were used for the experimental part, and the ground
truth was determined by a pathology expert who compared
their results with the manual counts. However, because
the detection algorithm used morphology and thresholding,
their method was unable to detect clumped and overlapping
cells. Khan et al. [10] proposed a method to count WBCs,
RBCs, and platelets. Several preprocessing steps were per-
formed before converting the image to binary. Segmentation
and cell counting were performed based on the optimal
threshold value, which was determined from a histogram.
They achieved 95% accuracy with their proposed method
compared to manual counting and a hematology analyzer.
However, this method is unable to detect overlapping cells.
When using iterative thresholds, the probability of losing
useful information from the image is high; this decreases the
accuracy of segmentation.

Nguyen et al. [11] used distance transform to solve the
overlapping cells problem; they proposed a method that
concentrated on clumped cells. First, they assigned central
points based on a distance transform. The optimal center
points were selected by checking the degree of boundary
covering the center point, and the average size of a cell was
estimated by the extraction of a single cell.Then an algorithm
was developed that used a single cell mask to split the cells.
Their dataset ground truth was labeled by experts, and the
accuracy of the proposed method using 𝐹-measurements
was 93.5% and 82%. Clumped cells were tolerated, but the
cells had to be regularly shaped and focused at a high
magnification. Not all blood cells have regular cell shapes,
and this is especially true if the blood cells are diseased.
Therefore, cell detection methods should be able to detect
irregular cells. Additionally, because of noise the performance
of their method was not good.

Rhodes and Bai [12] presented a circle detection method
using specific properties of Gabor wavelet filter to detect the
image features such as circularity. It is able to extract radius
wraps around the origin and the plane wave radiates from
the center of the filter. They test their proposed method on
synthetic images and real microscopic images, which allow a
certain degree of overlapping cells.The results were 91.3% and
87% of the cells detected in the two microscopic test images.

Since blood cells are approximately circular shape, circle
detection algorithms can still handle the challenge of blood
cells detection. Hough Transform is considered as one of the
most known algorithms for line and circle detection. It was
developed by Richard Duda and Peter Hart in 1972 [13]; they
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called it as a generalized Hough Transform after the related
1962 patent of Paul Hough [13]. Hough Transforms maps
every edge pixel into parameter space and use conventional
HT to detect lines, circles, or any other parametric shape.
In this paper, we concentrate on circle detection algorithms.
There are many techniques used for circle detection. Many
HT-based algorithms that detect circles were developed using
different methods. Yip et al. [14] reduced the accumulator
array to enhance computation time and improve memory
consumption. Other methods use pixel gradient information
[15, 16] to reduce computation time and the accumulator
array. Ho and Chen used the geometric properties of circles
to improve performance [17]. Xu et al. [18, 19] developed
the randomized Hough Transform (RHT), which randomly
selects three noncollinear edge pixels (𝑎, 𝑏, 𝑟), maps them
into parameter space, and requires less computation time and
memory storage compared with Standard HT methods. A
simple voting strategy in the accumulator is used to collect
evidence and determine the existence of a circle. Chung and
Huang [13] presented a method that can substitute various
shape detection algorithms.Thismethod enhanced the speed
of the original algorithm.They applied their method in RHT
and randomized circle detection (RCD) algorithms to detect
lines, circles, and ellipses. Their method presented good
results when compared with original methods.

Chiu et al. [20] presented a fast randomized Hough
Transform method for detecting circles, to improve RHT
which is less efficient in complex images due to its probability
usage problem. They pick one random edge pixel from the
image, and it is considered as a seed point. Then, a checking
method was developed to observe if this selected seed point
is lying on a true circle or otherwise. The checking criterion
is based on finding two other points whose distances are
the same from the selected seed point by using a 𝑊 × 𝑊

window centered by the selected seed point. This method
enhanced the probability to find relevant points on a true
circle. They have proven that using one random selected
point’s probability is sufficient in comparison to three random
selected points [13–19].

Chen and Chung [21] presented a circular algorithm
called RCD. They claimed that RCD outperformed other
most efficient Hough Transform based algorithms [13–19].
Regardless of accumulator usage as in [13–19], RCD works by
randomly selecting four edge pixels from the whole image.
Then, these pixels are examined if they are noncollinear and
it will proceed to form a candidate circle. RCD determines
that circle is a possible circle based on distance criteria. After
finding its center and radius, it checks the number of pixels
lying on the boundary of this possible circle. This checking
criterion is performed by calculating the distance between all
edge pixels in the image and the boundary of this possible
circle. If this distance is lesser than a fixed threshold value,
then it will be considered as a boundary of this possible
circle. Finally, another fixed threshold value has also been
used to decide a true circle or otherwise based on number
of edge pixels lying on a possible circle’s boundary. Other
related issues on RCD are less efficient when dealing with
huge image size consisting of a high number of edge pixels.
RCD also requires four selected edge pixels randomly from

the whole image, which causes low probability forming a true
circle. Furthermore, RCD has a drawback in terms of its fixed
number of iterations in which it is highly correlated to the
image texture. In addition, RCD acquires many parameters
and threshold values to be predefined and it ignores irregular
circles.

Since the Hough Transform presented a good perfor-
mance in different fields, many researchers [22–25] used
Hough transformmethod for detecting circle when perform-
ing RBC’s and WBC’s calculation task in the microscopic
images. Mahmood et al. [22] applied Hough transform
method for counting the RBC’s and WBC’s for the micro-
scopic images. In the first step, they converted the source
image to 𝐿 ∗ 𝑎 ∗ 𝑏 color space model and performed
color segmentation process of red and white cells based on
feature lightness over the 𝐿 channel ranging between 130–150
and 80–100, respectively. Then, the second step begins with
applying some morphological operators which are followed
by applyingCanny operator for edge detection process. Lastly,
they performed cell detection and counting using Circular
Hough Transform. The dataset was composed of 108 images
from the “Acute Lymphoblastic Leukemia Image Database
for Image Processing” database that was established and
maintained by Labati et al. [26]. Depending on the processing
and type of cells being analyzed, they achieved an accuracy
ranging from 64% to 87%. The Hough Transform consumed
memory storage and required a long computation time to
determine a large range of accepted radii. Additionally, the
ability to tolerate a high degree of overlapping and irregular
cells was limited; therefore, accuracy was not high.

Mahmood and Mansor [23] examined 10 image samples
of normal blood cells; image transformed to the HSV color
space, and then Saturation or “S” channel was selected
to proceed with image analysis. Morphological operators
and thresholding method were used over S channel for
cell segmentation. They used Circular Hough Transform to
investigate the circularity feature of the red blood cells in
order to perform detection and counting. Their proposed
method achieved approximately 96% of accuracy rate in
comparison to manual counting. Extracting and counting
normal cells are simple tasks if the detected cells are normal
cells and consist of small number of overlapping cells with
regular shape. For this kind of easy case, the idea of using
Hough Transform can be very helpful because it can produce
a good performance.

With similar inspiration to [23], Venkatalakshmi and
Thilagavathi [24] have also applied circularHoughTransform
method to count the RBCs from microscopic images after
performing preprocessing steps such as HSV transformation,
S channel extraction, histogram thresholding morphological
operations, XOR logical operation, and Canny edge detec-
tion. However, again, this proposed idea is less tolerant to
any overlapping cells or irregular cells’ shape. Later, Maitra
et al. [25] presented a composition method to extract red
cell from five microscopic images; these steps include spatial
smoothing and filtering, adaptive histogram equalization,
and edge detection. Similar to [23, 24], they used basic
Circular Hough Transform to detect the red cells based on
prior information such as size and shape features. Those
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Figure 1: General methodology for the proposed method.

methods [23–25] employ classic Hough Transform method
to detect the blood cells which inherits some drawbacks,
for example, required more computation, high memory
consumption, and less ability in detecting overlapping cells
or irregular cells.

Finally, Cuevas et al. [27] presented a method which
is not Hough Transform based to detect white blood
cells. They used a combination of circle detection with
electromagnetism-like optimization from the edge map
image. This method tolerated noise. In blood smear images,
the number of white cells was small compared with the
number of red cells; therefore, small degree of overlapping
white cells can be detected with their method. However,
they did not test the method on clumping cells. Their
results were compared with othermethods, and their method
demonstrated good accuracy.

3. Methodology

The proposed method was developed to analyze microscopic
images of blood smears by segmenting and counting both
WBCs and RBCs.The segmentation is based on thresholding
andmorphological operations, and then counting is based on
the circularity feature of the blood cells extracted using an
iterative structured circle detection algorithm.

A new technique for binary images based on the funda-
mentals of RCD has been proposed and used for counting
RBCs and WBCs. Therefore, the original image is separated
into two images; the first image contains RBCs only and the
second image contains WBCs; this step has been done using
thresholding.We study the histogram for 20 sample gray scale
images, andwe find out the best thresholding values to extract
WBCs and RBCs; values were 64 and 140, respectively. After
cells separation, each image is preprocessed using morphol-
ogy operators to obtain the edge image using Canny operator.
Then, an iterative structured circle detection algorithm is
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Figure 2: Preprocessing steps for WBCs.

used to count cells in each image. Figure 1 shows the proposed
method for WBC and RBC segmentation.

3.1. Preprocessing. The proposed method for cell segmenta-
tion works with edge images. Microscopy images of blood
smears are colored images, and several steps are required to
prepare the image before extraction of the edge image. In
our proposed method, the cells were separated by type and
distinct preprocessing steps were developed for WBCs and
RBCs separately.

Preprocessing for WBCs. At this stage, white blood cells
are extracted as a separate image, and the red blood cells
have varying intensities; therefore, it is preferable to develop
separate preprocessing steps for each cell type.

Figure 2 shows the overall preprocessing steps forWBCs.
To remove RBCs from the image, the RGB image was
converted into grayscale image by eliminating the Hue and
saturation information while retaining its luminance, as
shown in Figure 3(b), and then converted the image to binary
using thresholding using a threshold value (64); visualize
the WBCs, as shown in Figure 3(c). Some undesired holes
appeared in the cells, and the morphology operator, fill
holes were used to remove them.The complementary images
before the holes were filled, as shown in Figure 3(d).

This image eroded to reduce the number of overlapping
cells, as shown in Figure 4(a). Because the boundary of the
cells is required, the holes were filled to improve the edge
detection. Figure 4(b) shows the image after the holes filled.
The Canny operator was used to visualize the cell edges, as
shown in Figure 4(c). After edge detection, some undesired
pixels appeared that affect the segmentation process. These
pixels were removed using an open morphology operator, as
shown in Figure 4(d).

3.1.1. Preprocessing for RBCs. In this stage, preprocessing
was performed on the red blood cells after removing the
white blood cells from the image. Figure 5 shows the overall
preprocessing steps for the RBCs. First, the original image is
converted into grayscale image by eliminating the Hue and
saturation information while retaining its luminance.
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(a) (b)
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Figure 3: (a) Original blood image, (b) gray image, (c) binary image using thresholding, and (d) complement image.

Then, image was converted to binary using thresholding
value of (140), to visualize all of the red and white blood cells
in the image, as shown in Figure 6(a). To remove the white
blood cells from the image, the complementary white cells
image was taken and subtracted from the first image to obtain
only the red cells, as shown in Figure 6(b).

When the image was converted to binary and the white
blood cells were removed, undesired holes were created.
These holes disturb the solidness of the object. Therefore,
morphological operators are used to fill the holes, as shown
in Figure 6(c).

A morphological step using an erosion operator is used
to reduce the overlap between cells, as shown in Figure 7(a).
Canny edge detection method is used to obtain the edge
image, as shown in Figure 7(b). Some undesired pixels
appeared after edge detection. These pixels represent either
platelets or noise, and it will subsequently affect the seg-
mentation process. Therefore, these pixels are removed using
a morphology operator on the binary image, as shown in
Figure 7(c). After these preprocessing steps, the image was
prepared for input to our proposed circle detection algorithm.

3.2.The ProposedMethod for Counting. Thebasic idea for the
proposed method was derived from the RCD [21] algorithm.

RCD algorithm ignores accumulator capability that has been
introduced by Hough Transform method. Several modifica-
tions were made to the basic RCD algorithm to solve the
initialization problemwhen using big images with high num-
ber of pixels. The methods modified to detecting irregular
circles, selecting the optimal circle from the candidate circles,
determining the number iterations in a fully dynamic way
to enhance the algorithm detection and running time, and
improving the detection of overlapping cells. The workflow
of the proposed method is shown in Figure 8.

Initialization Problem. The proposed method partitions the
edge image based on 8-neighbor connected components in
order to overcome the initialization problem caused in basic
RCD [21]. We eventually divide the whole image into small
partitions and we consider each partition as an input image
before entering into our iterative structured circle detection
algorithm that employs local randomization step.

Regarding to this initialization problem, as we high-
lighted earlier that selecting four pixels globally (from the
whole image) can reduce the probability of finding true
circle, time consuming, and needs of a high number of
iterations to find all true circles. This can be easily illustrated
as in Figure 9(a) if cell A is to be detected, and the four
selected pixels are chosen in Red Cross mark. Therefore,



6 Computational and Mathematical Methods in Medicine

(a) (b)

(c) (d)

Figure 4: (a) Eroded image, (b) image after filling holes, (c) edge detection using a Canny at highmagnification, and (d) image after removing
the noise at high magnification.
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Figure 5: Preprocessing steps for RBCs.

we simplify this process by introducing four pixel selections
locally (within each partition image). Assume that cell A is
to be detected in the partition image, and then these four
local pixels are chosen randomly from the partition image
as depicted in Figure 9(b). This local randomization process
repeats until all partition images are visited.

In each partition image, our proposed method randomly
selects up to four edge pixels and checks the existence of

a circle using (1), which is based on three noncollinear pixels
(v1, v2, and v3):

(𝑥𝑗 − 𝑥𝑖) (𝑦𝑘 − 𝑦𝑖) − (𝑥𝑘 − 𝑥𝑖) (𝑦𝑗 − 𝑦𝑖) = 0. (1)

If the result is zero, the three-edge pixels are collinear and
cannot form a circle; they are returned to the edges array
for the chosen partition, and four new subsequent pixels are
selected from the same partition.

If the pixels are not collinear, they are able to form a
circle. Four candidate circles, C123, C124, C134, and C234, can
be formed using the four edge pixels (v1, v2, v3, and v4), as
shown in Figure 10. Each circle is formed from three edge
pixels, and the center (𝑎, 𝑏) and radii (𝑟)were calculated using
(2), (3), and (4), respectively. Consider the following:
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(a) (b)

(c)

Figure 6: (a) Binary image using thresholding, (b) RBCs after removing theWBC’s by subtracting the two images, and (c) image after filling
holes.

In basic RCD algorithm, circle can be formed with three
prior pixels; the fourth pixel is used to obtain four candidate
circles at a time for each iteration, which is better than
forming one candidate circle for each iteration. However, in
our proposedmethod, one of the candidate circles, C123, C124,
C134, and C234, is selected to be possible circle. This based on
the candidate with the highest probability of being a possible
circle. This can be achieved by checking the number of edge
pixels located on the boundary of each candidate circle. We
assumed that candidate circle with the maximum number of
edge pixels on its boundary is considered as a possible circle.
The following calculates the distance between each edge pixel
(𝑧) in the partition and the boundary of the candidate circle:

𝑑𝑧→ 𝑖𝑗𝑘 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

√(𝑥𝑧 − 𝑎𝑖𝑗𝑘)
2
+ (𝑦𝑧 − 𝑏𝑖𝑗𝑘)

2
− 𝑟𝑖𝑗𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (5)

After checking all of the edge pixels in the partition and
selecting the possible circle, the number of edge pixels located
on its boundary is determined. If this number is greater than
the value obtained from (2×𝜋×𝑟×𝑇𝑟), then the possible circle
is considered as a real circle. Where 𝑇𝑟 = 0.7 for WBCs and
𝑇𝑟 = 0.5 for RBCs. (2 × 𝜋 × 𝑟) is the circle perimeter, and this
value should be equal to the estimatednumber of pixels on the
circle boundary. 𝑇𝑟 is the accepted ratio of the total number
of pixels on the possible circle boundary that determines
that the circle is a real circle. Therefore, if 70% or 50% of
edge pixels are located on the boundary of possible circle for

WBCs or RBCs, respectively, the possible circle is considered
a real circle. Then the edge pixels are removed from the set
of edges in that partition and the process starts again to
find other circles within the same partition. If there are not
enough remaining edge pixels or less than the threshold value
of 𝑇min = (2 × 𝜋 × 𝑟min × 𝑇𝑟), where 𝑟 is the minimum
radius possible for red or white blood cells and 𝑇𝑟 is one
of the values mentioned above, then the next partition is
selected and the process begins again. Unlike basic RCD, our
proposed method applies dynamic 𝑇min thresholding value
which depends on minimum acceptable radius (𝑟min) value
and 𝑇𝑟 value pertaining to the type of cells to be detected.

If the number of edge pixels on the boundary of the
possible circle is less than the threshold value 𝑇𝑟, four
new edge pixels are randomly selected. The 𝑇min value is
determined based on theminimumnumber of pixels that can
form a circle boundary with a radius 𝑟 and is estimated to be
(2 × 𝜋 × 𝑟 × 𝑇𝑟) with a width of one pixel.

By adding the 8-neighbor connected component step,
the algorithm is guaranteed to randomly select edge pixels
from every part of the image, check the circle possibilities
for all image edge pixels, and locate more true circles, which
improves the performance of the method, especially for large
images with a high number of pixels.

Another drawback of basic RCD algorithm, it chooses
four random edge pixels from the entire or global image
that may cause chosen pixels from different actual shapes as
depicted in Figure 11(a). These edge pixels can form a circle
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(a) (b)

(c)

Figure 7: (a) The eroded image, (b) image after edge detection using thresholding, and (c) after removing extra unconnected pixels.

based on three threshold values (𝑇𝑎, 𝑇𝑑, and 𝑇𝑟); Figure 11(b)
shows some basic RCD threshold values. 𝑇𝑎 represents the
threshold value of distance between randomly selected edge
pixels; 𝑇𝑑 represents the threshold value of distance between
the fourth edge pixel and the boundary of the possible circle,
and 𝑇𝑟 threshold value of accepted ratio of the number of
pixels on the possible circle boundary, as (6). Based on these
threshold values, basic RCD decided that this circle is a true
circle, even if it is untrue. Figure 11(a) demonstrates how the
basic RCD algorithm selects four pixels randomly from the
numbered shapes (1, 2, 3, and 5) and forms a possible circle
based on 𝑇𝑎, 𝑇𝑑, and 𝑇𝑟 thresholding values:

𝐶𝑖𝑗𝑘 =

{{{{{{{{{{{

{{{{{{{{{{{

{

accept as a possible circle
if (𝑑(𝑖𝑗) ∩ 𝑑(𝑖𝑘) ∩ 𝑑(𝑗𝑘) > 𝑇𝑎)
∩ (𝑑𝑧→𝐶𝑖𝑗𝑘 < 𝑇𝑑)

accept as a true circle
elseif Number of edge pixels on
𝐶𝑖𝑗𝑘 boundary > 𝑇𝑟

choose another random pixels
else.

(6)

Taking into account the above problems, we introduce
partition based on 8-nieghbor connected components in our
proposed method. We restrict up to four random selected
pixels from a particular partition. Next, we also check the
number of edge pixels located on the possible circle boundary
within that particular partition. Having known these pieces

of information, it guarantees (1) better improvement perfor-
mance and (2) higher probability of finding all existed true
circles in that source image and reduces true-negative circles.
Irregular Circle Detection. Normal red and white blood
cells are approximately circular; however, not all blood cells
are regular circles. Therefore, we detected irregular circles
whenever a possible circle was found. We defined a virtual
circle with the same center and different radii, as shown in
Figure 12(a). When the algorithm locates a possible circle, we
superimpose these two circles on the grid and check all of the
edge pixels in the segment and detect all edges lying between
the two circles. Figure 12(b) shows the irregular circle pixels,
which are located between the two virtual circles in gray color
are detected.

The red pixels are not included in the boundary of
candidate circle. By partitioning the image based on con-
nected components, we increase the distance between the two
circles.This ensures that the detection edges on the boundary
of the possible circle will be correct without using edges from
other shapes, as observed in Figure 11(a).
Our Proposed Iterative Structured.Thenumber of iterations is
extremely important to find all circles in the partition image.
Therefore, determining the number of iterations is not an
easy task for several reasons. Firstly, the number of iterations
predominately depends on two factors: the number of edge
pixels in the image and the distance between the edge pixels
that are required to form a circle in each iteration. As a
result, this may cause huge numbers of iteration to find all



Computational and Mathematical Methods in Medicine 9

Picks four random 
edge pixels

Four candidate 
circles 

Draw that circle and 
remove its edge pixels

from edges set

8-neighbor connected components
for binary image

Loop 

number of partitions  

Check candidate circle 
that has a max pixels 

number on its boundary

This candidate is a 
possible circle

If number of edge pixels on 
its boundary greater than 

Start

End

No

No

Yes

Yes
If remaining edges greater

new random pixels

If    
finished all 
partitions  

No

Yes

current partition <

(2 × 𝜋 × r × Tr)

than (2 × 𝜋 × r × Tr), pick

Noncollinear

Figure 8: Proposed method workflow.

(a) (b)

Figure 9: (a) Initialization problem in basic RCD in real image, and (b) partition from an image.

v4

v3

v1

v2

Figure 10: Four candidate circles formed using four edge pixels.

possible circles in the image.Our proposedmethod suggests a
dynamicway to decide number of iterations for each partition
image. We introduce two other factors: the number of pixels
in the partition image and the cell radius.

For example, assume we have a partition image, as shown
Figure 13(a); it has 1000 edge pixels, and we search for the

circle with a minimum circumference or perimeter value
(2×𝜋×𝑟×0.7). If 𝑟 = 100 and the perimeter has a width of one
pixel size, then it is about 440 edge pixels can be formed as a
circle perimeter (2×𝜋×100×0.7). Therefore, we can assume
that Figure 13(a) contains at most (2 ≈ 1000/440) circles.

According to the information above, the number of
iterations can be determined as detailed below. Suppose
random pixels were selected on the first iteration, such as
in Figure 13(b). This case cannot represent the accepted
circle because it does not meet with the proposed method
threshold value 𝑇𝑑 and 𝑟max parameter in order to detect
any of the two cells (A, B). If v2, v3, and v4 form a circle
as in Figure 13(b), then the proposed method rejects that
candidate circle because the distance between v1 and the circle
is greater than threshold value 𝑇𝑑 and the candidate circle’s
radius exceeds 𝑟max. This will be similar to cases in Figures
13(c) and 13(d).

Figure 14 explains in detail the subsequent processes as
shown in Figure 13(b). Assuming that there are approximately
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Figure 11: (a) Wrong circle detection in basic RCD algorithm and (b) some basic RCD thresholding values.

Irregular circle 

(a, b)

r1
r2

(a) (b)

Figure 12: (a) The irregular circle detection method and (b) the detection of gray pixels of the irregular cell.
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Figure 13: Example of (a) partition image, (b) first, (c) second (d), and third random pixel distribution cases demonstrating unacceptable
circles and (e) the accepted case of random pixel distribution.
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Figure 14: Some cases for unacceptable circles for the case shown in Figure 13(b).

500 edge pixels forming each cell (A and B), and the cell (A)
is to be detected; then about 500 number of iterations are
required to find all unacceptable circles for each distribution
of random pixels as shown in Figures 13(c) and 13(d). This
is due to found circles that do not meet requirement of 𝑇𝑑
threshold and 𝑟max parameter values. Therefore, the total
number of iterations for this partition image may arise up
to 1500. In other word, 500 multiply with 3 cases as shown
in Figures 13(b), 13(c), and 13(d). The only acceptable case
is shown in Figure 13(e). Here, the random pixel distribu-
tion meets our proposed method’s condition dealing with
𝑇𝑑 thresholding and 𝑟max parameter values in relation to
accepted circle formation. Based on the previous case, the
proposed method requires 1500 iterations at most to find all
of the unaccepted circles, and the accepted circle should be
located by iteration 1501.

Because the proposed method requires a certain dis-
tance between random edge pixels on the same circle, the
number of iterations was increased slightly to tolerate the
proposed method conditions and ensure that all possibilities
are included.The final expression for the number of iterations
is as follows:

Iterations Number

= (Partition Edge Pixels Number

× (Number of Randomly Edge Pixels Selected − 1)) .

(7)

For the previous example, the proposed method requires
(1000 × (4 − 1)) = 3000 iterations to locate all of the circles
in Figure 13(a). For this case, there is no fixed number of
iterations for any of the partitions. The number of iterations
is fully dynamic based on the relation between the number of
edge pixels in the partition and cell radius.

3.3. Steps of the Proposed Method

Step 1. Divide the entire binary image to a small partitions
based on 8-neighbor connected components. Each partition
is denoted by 𝑃𝑖 so that each image is defined by the set

𝑃1, 𝑃2, . . . , 𝑃𝑛, where 𝑃 is the number of edge pixels for each
partition, 𝑛 is the number of partitions, and𝑓 is the number of
failures that can be tolerated.The failure counter is initialized
so that 𝑓 is set to 0.

Step 2. The algorithm loops from 𝑃1 to 𝑃𝑛.

Step 3. If |𝑃𝑖| ≤ 𝑇min or 𝑓 ≥ ((V − 1) × |𝑃𝑖|), where V is the
number of randomly selected pixels and𝑇min is theminimum
number of pixels allowed to start the method, the algorithm
proceeds to Step 2; otherwise four edge pixels, 𝑣1, 𝑣2, 𝑣3, and
𝑣4, are randomly selected and removed from 𝑃𝑖.

Step 4. Determine the four candidate circles from the four
edge pixels such that the distance between any two of the
three pixels that forms the circle is greater than 𝑇𝑎, 𝑇𝑑 the
distance between the possible circle and virtual circle. The
fourth pixel must come between the two circles; the distance
between fourth edge pixel and the boundary of the virtual
circle is less than 𝑇𝑑. Figure 15 shows the proposed method
thresholding values and parameters, and the radius 𝑟min ≤

𝑟 ≤ 𝑟max. If this is true, the algorithm proceeds to Step 5;
otherwise the four edge pixels are returned to 𝑃𝑖. Then, 𝑓 =

𝑓 + 1 and the algorithm continues to Step 3.

Step 5. For each candidate circle, the number of pixels on
the boundary is calculated using (5) and the circle with the
maximum number of pixels on its boundary is assumed a
possible circle because it has the highest probability.

Step 6. If the number of pixels on the boundary of the
possible circle is greater than (2𝜋𝑟𝑇𝑟).Where𝑇𝑟 is a threshold
value equal to 0.5 for RBCs and 0.7 forWBCs.Then it is a real
circle and all of the pixels found on its boundary are removed
from the set of pixels 𝑃𝑖, and 𝑓 is set to 0. The algorithm
returns to Step 3 to find other circles. Otherwise this possible
circle is false, 𝑓 = 𝑓 + 1, and the algorithm returns to Step 3.

The proposed method has a few thresholding values
(𝑇𝑎, 𝑇𝑑, and 𝑇min) and parameters (𝑟min and 𝑟max) to be
determined because they have direct correlation on the
detected cell results. For RBC’s and WBC’s, the radiuses of
[𝑟min, 𝑟max] were measured using simple distance measure
ranging from [10, 50] and [20, 70] pixels, respectively. This
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Figure 15: Proposed method parameters.

Figure 16: RBCs detected by the proposed method.

helps to increase both the probability of detecting correct cells
and performance of overlapping cells.

Specifying𝑇min thresholding with the value (2×𝜋×𝑟min×
𝑇𝑟), it improves the proposed method performance. It stops
searching for a circle when the number of edge pixels in
the partition is less than 𝑇min. 𝑇𝑎 thresholding values also
influence the proposed method performance. As 𝑇𝑎 value
decreases, both number of candidate circles and probability
of detecting wrong circles are increasing (FP); otherwise the
number of detected circles is reducing. Apart from that the𝑇𝑑
thresholding value represents the distance between the two
virtual circles and this condition helps our proposed method
to detect irregular circles (𝑇𝑑 = 20) and increases the number
of edge pixels to be included on the boundary of the possible
circle.

As conclusion, several improvements were made to the
basic RCD algorithm, including the initialization step, solved
by addition of 8-neighbor connected component step.Which
divide the image into smaller partitions and the ability to
select random edge pixels locally from the smaller parts
instead of choosing random edge pixels globally from the
entire image. This increased the probability of locating more
circles. Not all blood cells have a regular circular shape. By
increasing the thickness of the circle perimeter, the proposed
method is also able to detect irregular cells. Partitioning
the image and specifying the cell radius in the proposed

model improved the detection of overlapping cells. Finally,
we determined a relationship between the cell radius and the
number of edge pixels in the partitioned image to control the
number of iterations.

4. Experimental Results and Discussion

4.1. Dataset. The dataset used in this paper consisted of
100 actual microscopy images of blood samples. The images
captured with an optical laboratory microscope coupled with
a Canon Power Shot G5 camera. All of the images are in JPG
format with 24-bit color depth and a resolution of 2592 ×
1944 pixels. The images were taken at different microscope
magnifications ranging from 300 to 500x [26].

4.2. Ground Truth. The ground truth was determined by an
expert and used to validate our proposed method results.

4.3. Evaluation Methods. The results from the proposed
method were quantitatively analyzed based on the ground
truth. Precision, Recall, and 𝐹-measurements were used to
determine segmentation and counting accuracy with the
following equations:

PR =
TP

(TP + FP)
,
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Figure 17: Overlapping cells detected by the proposed method.

Table 1: Summary of results for WBCs.

Set Manual count Proposed method count TP FN FP PR RC FM
1 117 118 116 1 2 98.3% 99.1% 98.7%
2 192 199 191 1 8 95.9% 99.4% 97.6%
3 53 57 53 0 4 92.2% 100% 96.3%
4 15 13 13 2 0 100% 86.6% 92.8%
5 99 108 95 4 13 87.9% 95.9% 91.7%
6 298 350 297 1 53 84.8% 99.6% 91.6%
7 73 82 72 1 10 87.8% 98.6% 92.9%
8 28 31 26 2 5 83.8% 92.8% 88.1%
9 41 47 40 1 7 85.1% 97.5% 90.9%
10 34 37 32 2 5 86.4% 94.1% 90.1%
Total 950 1042 935 15 107 90% 98% 94%

Figure 18: Real case example of irregular cells detected.

RC =
TP

(TP + FN)
,

𝐹-Measure = 2

(1/PR + 1/RC)
.

(8)

We divided the dataset into 10 sets. For each set, we
determined the average true positive value (TP), which is
when the agreement between the expert and the proposed
method for the detected cells. The false negative (FN), which
is when the proposedmethodwas unable to detect the cell but
the expert detected a cell, and the false positive (FP), which
is when the proposed method detected a cell but the expert

did not. Then, we calculated the Precision (PR), Recall (RC),
and 𝐹-measures (FM) of each set. The overall PR, RC, and 𝐹-
measures for the proposed method are listed on the far right
in Tables 1 and 2.

Table 1 summarizes the segmentation and counting accu-
racy of the proposed method for WBCs. The following
segmentation and counting accuracies were calculated using
the proposed method for WBCs: PR = 90%, RC = 98%, and
𝐹-measure = 94%.

Table 2 summarizes the segmentation and counting accu-
racy results of the proposed method for RBCs. The following
is the segmentation and counting accuracies of RBCs that
were calculated using our proposed method: PR = 95%, RC
= 98%, and 𝐹-measure = 96%.

Figure 16 shows sample images from the dataset and
RBCs detected using the proposed method. These samples
did not have many overlapping cells. Our proposed method
was able to tolerate a variable degree of overlapping cells.
Figure 17 shows sample images from the dataset that contain
overlapping cells and the RBCs that were detected using the
proposed method.

Additionally, our proposed method was able to perform
for cases with irregularly shaped cells. Figure 18 shows an
example of the irregularly shaped cells that were detected
using the proposed method. The RBCs had irregular shapes
and were detected with the proposed method.
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Table 2: Summary of results for RBCs.

Set Manual count Proposed method count TP FN FP PR RC FM
1 2117 2123 2076 41 47 97.7% 98% 97.9%
2 2553 2586 2474 79 112 95.6% 96.9% 96.2%
3 2484 2529 2443 41 86 96.5% 98.3% 97.4%
4 3788 3799 3689 99 110 97.1% 97.3% 97.2%
5 4899 5107 4798 101 309 93.9% 97.9% 95.9%
6 4887 5133 4699 188 434 91.5% 96.1% 93.7%
7 5195 5228 5007 188 221 95.7% 96.3% 96%
8 4223 4341 4190 33 151 96.5% 99.2% 97.8%
9 4474 4588 4394 80 194 95.7% 98.2% 96.9%
10 4974 5044 4842 132 202 95.9% 97.3% 96.6%
Total 39594 40478 38612 982 1866 95% 98% 96%

(a) (b)

Figure 19: (a) Sample from our results for normal cases and (b) staining problem in some cases.

Tables 1 and 2 show some testing groups presenting a
quite high FP rate. This is due to microscopic images used
for Leukemia blood cells patients. These images in some
cases (healthy cases) and the cells are not crowded and
clumped together and our proposed method’s performance
was acceptable with low FP rate as shown in Figure 19(a). In
some other cases, some images have problems in staining as
shown in Figure 19(b). Unfortunately, our proposed method
has detected some true negative cells. It finds random edge
pixels that can form a circle and the number of edges on
the boundary of the possible circle is adequate; however, this
leads to detect the wrong circle as shown in Figure 20(a).
In some other cases, error in preprocessing steps such as
incorrect holes filling problem creates negative effect on edge
detection phase as shown in Figure 20(b).

We evaluate our proposed method’s result using a simple
least square method in RANSAC algorithm. We take 40
random samples from our automatic and its corresponding
manual counting results and apply them on the RANSAC
algorithm. Our findings show that the selected results con-
sistently fit a regression line as shown in Figure 21.Therefore,
our data can be classified as a consensus, which means
that our results are reasonably acceptable because most of
the points have been classified as part of the consensus
set.

4.4. Comparison of the Results with Other Methods. The
average accuracy of the proposedmethodwas 97.5% for RBCs
and 98.4% for WBCs. We compared our proposed method
with the method presented in [22]. They used the same
dataset, performed segmentation, and counted WBCs and
RBCs. They used color-based segmentation using 𝐿 ∗ 𝑎 ∗ 𝑏
color space and the Hough Transform for cell extraction
and counting. The results for all of the images were based
on a user specified CIELAB range. The accuracy of their
results ranged from 64% to 87%. In our proposedmethod, we
performed segmentation on the WBCS and RBCs separately
and developed distinct preprocessing steps for each. This
step helped us to obtain more accurate results, where as
they implemented the same preprocessing for both cell types,
which were not separated.They used the 𝑏 channel forWBCs
and the 𝐿 channel for RBCs. Three sample images were used
to develop general parameter values for CIELAB, which was
used to filter the cells. Only three sample images were tested
to justify the thresholding values, which are insufficient to
generalize for all images. Hence, it leads to some information
loss, which affected their performance. Unlike basic CHT,
our proposed method was able to detect a variable degree of
overlapping and irregular cells.

Putzu and di Ruberto [28] used the same data set and
presented a method that only detected and counted WBCs.
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(a) (b)

Figure 20: (a) Wrong detection in some case from our proposed method and (b) preprocessing problem.

Table 3: Accuracy of the proposed method compared with other methods.

Method RBCs WBCs RBC’s
Average accuracy Average accuracy PR RC FM

Color-based and Hough transform [22] 64% 81%
Morphology operators and watershed algorithm [28] — 93.5%
Basic Circular Hough Transform (CHT) 67% — 71% 68% 71%
Our proposed method 97.5% 98.4% 95% 98% 96%
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Figure 21: The outliers have no influence on our proposed result as
it consistently fits in a regression line.

They selected 33 images to test. The watershed technique
was used to segment and separate overlapping cells and the
average accuracy for detecting and counting the cells in the
33 images was 93.5%. Table 3 compares the accuracy of our
proposed method to other methods.

Furthermore, we also have conducted similar experiment
using the same dataset and the same preprocessing steps
using the classic circular Hough Transform CHT [19] to
detect RBCs.Our findings justified that our proposedmethod
outperforms the classic CHT. The comparison results can

be shown in Table 3; the basic CHT achieves 67% average
accuracy for detecting RBCs, whereas our proposed method
achieves 97.5%. Our proposed method has shown better
results in sensitivity (PR) and specificity (RC).With the intro-
duction of iterative structured circle detection algorithm, our
proposed method is able to detect irregular cells and tolerate
with a certain degree of overlapping cells, which it leads
to produce higher probability to detect more cells that are
correct. Unlike our proposed method, basic CHT method
gains slightly lower performance when detecting overlapping
cells as shown in Figure 22.

In case of other cases irregular cells, our proposedmethod
presents a better performance thanCHT in that case as shown
in Figure 23.

5. Conclusions

This paper proposed a method to automate the segmentation
and counting of red and white blood cells using iterative
structured circle detection algorithm. Several improvements
were made to the RCD algorithm, including an initialization
step to find 8-neighbor connected component. Additionally,
the proposed model features an enhanced probability of
selecting the correct circle from four candidate circles, the
capability to detect irregular cells, the use of dynamic number
of iterations, and improved detection of overlapping cells.The
proposed method performed the segmentation and counting
of WBCs and RBCs well when results were compared with
the ground truth, which was determined by experts. The fol-
lowing segmentation and counting accuracies were achieved
using the proposed method: PR = 89.7%, RC = 98.4%, and
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(a) (b)

Figure 22: (a) CHT RBCs detection results and (b) our proposed method RBCs detection results in overlapping cells.

(a) (b)

Figure 23: (a) CHT performance when detecting irregular cells and (b) the proposed method performance when detecting irregular cells.

𝐹-measure = 93.9% for WBC and PR = 95.3%, RC = 97.5%,
and 𝐹-measure = 96.4% for RBCs.
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